Ergodicity of the 3d Stochastic Navier-stokes Equations Driven by Mildly Degenerate Noises:galerkin Approximation Approach

نویسنده

  • SERGIO ALBEVERIO
چکیده

We prove the strong Feller property and ergodicity for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Galerkin approximation approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodicity of the 3d Stochastic Navier-stokes Equations Driven by Mildly Degenerate Noise

We prove that the any Markov solution to the 3D stochastic Navier-Stokes equations driven by a mildly degenerate noise (i. e. all but finitely many Fourier modes are forced) is uniquely ergodic. This follows by proving strong Feller regularity and irreducibility.

متن کامل

Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises

We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Kolmogorov equation approach.

متن کامل

Ergodicity of the Finite Dimensional Approximation of the 3d Navier-stokes Equations Forced by a Degenerate Noise

We prove ergodicity of the finite dimensional approximations of the three dimensional Navier-Stokes equations, driven by a random force. The forcing noise acts only on a few modes and some algebraic conditions on the forced modes are found that imply the ergodicity. The convergence rate to the unique invariant measure is shown to be exponential.

متن کامل

Ergodicity for the Navier-Stokes Equation with Degenerate Random Forcing: Finite-Dimensional Approximation

We study Galerkin truncations of the two-dimensional Navier-Stokes equation under degenerate, large-scale, stochastic forcing. We identify the minimal set of modes that has to be forced in order for the system to be ergodic. Our results rely heavily on the structure of the nonlinearity. c © 2001 John Wiley & Sons, Inc.

متن کامل

Ergodicity of the 2D Navier-Stokes Equations with Degenerate Stochastic Forcing

The stochastic 2D Navier-Stokes equations on the torus driven by degenerate noise are studied. We characterize the smallest closed invariant subspace for this model and show that the dynamics restricted to that subspace is ergodic. In particular, our results yield a purely geometric characterization of a class of noises for which the equation is ergodic in L0(T 2). Unlike previous works, this c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009